Jet Structure topical group report

photon

Dennis V. Perepelitsa Assistant Professor University of Colorado Boulder

co-convener with Rosi Reed (Lehigh U)

15 December 2016 3rd sPHENIX Collaboration Meeting Georgia State University

National Nuclear Physics Summer School University of Colorado Boulder 9-22 July 2017

- 1. Role of the Jet Structure topical group
- 2. The evolving physics picture
- 3. Summary of activities in the TG
- 4. Future activities (where to get involved!)
- 5. Plan for Quark Matter

1. Role of JS Topical Group

• *Performance*:

- quantify sPHENIX experimental capabilities
- provide guidance to Collaboration for design decisions / reviews

Physics:

- → keep abreast of scientific developments
- determine where our physics program can be most impactful

Simulations/software:

- → keep up with / test latest updates in the simulations framework
- develop tools for eventual analyzers

Organizational/support:

→ provide plots/input for sPHENIX talks/posters/proceedings/reviews

How do we accomplish these effectively with existing person-power?

2. "early Run 1" era jet physics

inclusive jet suppression

dijet p_T balance

fragmentation function ratios

- Jet spectra (R_{AA} , recoil jet spectrum, early b-jets, etc.)
- Di-jets (multi-jet, missing p_T flow, early γ +jet, etc.)
- Fragmentation functions (jet+track correlations, etc.)

2. Jet physics during LHC Run 2

- Since then, developments in two major categories:
 - → rarer probes (high-statistics for photons, *b*-jets)
 - extreme kinematic reach (charged particle & jet spectra)
 - \rightarrow new substructure observables (mass, z_q , others)

2. Photon-jet physics in Run 2

- Photon grants external handle on initial hard scattering
 - → no surface bias
 - ⇒ tests absolute *E*-loss (c.f. A_{J} sensitive to relative jet-to-jet difference in *E*-loss)
 - → can make "apples to apples" pp to Pb+Pb comparisons
 - → handle on light quark jet E-loss, connection b/w RHIC & LHC

vary system size

2. Photon-tagged FF

$$R_{D(z)} = \frac{......}{s}$$
 after quenching $D(z; p_T^{jet})$ in $A+A$ $D(z; p_T^{jet})$ in $p+p$

- In typical FF measurements, implicit flavor difference between jets in the numerator and denominator
 - → may cause artificial features in, e.g. D(z) ratio
 - \rightarrow measure distribution of p_T^{hadron}/p_T^{jet} , but in photon-containing events
- Together, $\underline{photon+jet\ p_T\ balance}$ & $\underline{photon-tagged\ FF}$ separate overall E-loss from medium-induced modification of fragmentation
 - existing γ+h measurements at RHIC muddle these two effects

Run: 286834

Event: 124877733

2015-11-28 01:15:42 CEST

Pb+Pb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

photon + multijet event

 $\Sigma E_{T}^{FCal} = 4.06 \text{ TeV}$

- 1. γ+jet: absolute E-loss
- 2. γ+jet vs. reaction plane
- 3. γ -tagged R_{AA}
- 4. missing- p_T flow w/ external scale
- 5. D(z) for Pb+Pb jets with same flavor & original p_T as in p+p

high-energy photon

2. di-b-jet asymmetry

- Back-to-back b-jets enhance contribution of "flavor creation" processes relative to inclusive b-jets
 - → indication of more balanced pairs than inclusive jets
 - → but $p_{T,1} > 100 \text{ GeV}$, $p_{T,2} > 40 \text{ GeV}$
- Larger b-jet yields: more opportunities to repeat differential analyses we've done with inclusive jets

27.4 pb⁻¹ (5.02 TeV pp) + 404 μb⁻¹ (5.02 TeV PbPb) 27.4 pb⁻¹ (5.02 TeV pp) + 404 µb⁻¹ (5.02 TeV PbPb) CMS **CMS** 1.4 T_{AA} and lumi. uncertainty and lumi. uncertainty 0.6 0.6 0.2 10² p_T (GeV) p_ (GeV) 27.4 pb⁻¹ (5.02 TeV pp) + 404 μb⁻¹ (5.02 TeV PbPb) 27.4 pb⁻¹ (5.02 TeV pp) + 404 μb⁻¹ (5.02 TeV PbPb) CMS CMS 1.4 CMS 5.02 TeV CMS 5.02 TeV CMS 2.76 TeV **CMS 2.76 TeV** T_{AA} and lumi. uncertainty T_{AA} and lumi. uncertainty 0.2 10-30% 30-50% 10² 10² p_T (GeV) p_ (GeV) $27.4 \text{ pb}^{-1} (5.02 \text{ TeV pp}) + 404 \mu b^{-1} (5.02 \text{ TeV PbPb})$ 27.4 pb⁻¹ (5.02 TeV pp) + 404 μb⁻¹ (5.02 TeV PbPb) **CMS CMS** CMS 5.02 TeV CMS 5.02 TeV **CMS 2.76 TeV CMS 2.76 TeV** and lumi. uncertainty and lumi. uncertainty 50-70% 70-90% p_T (GeV) p_T (GeV)

2. Extreme kinematic reach

- Charged hadron R_{AA} → 1 at p_T > 200 GeV?
 - → also interesting to see R_{AA} for TeV-scale jets
- Remember: 50 GeV reach in charged hadrons for sPHENIX

2. Jet substructure: mass

- Charged-jet results from ALICE: noticeable depletion of mass distribution at fixed (post-quenching) jet p_T
- Physics connection: depletion of mass from in-medium virtuality evolution?
 - challenge to TG: how different is calo-only vs. particleflow methods for a mass measurement?

2. Jet substructure: Zg

- Measurement of z_g , which in vacuum is sensitive to first branching in the parton shower
 - → systematic modification vs. centrality at the LHC
- Physics connection: sensitivity to coherent or de-coherent energy loss of parton shower in medium

2. Jet substructure

- Others which are not as "directly" connectable to underlying physics (IMO) but potentially useful nevertheless
 - challenge for TG: which are most useful for quantifying / disambiguating jet quenching at RHIC?

3. Summary of activities in the TG since last Collaboration Meeting

- 1. Jet & hadron response, FF, unfolding studies
 - → initially motivated as a response to ALD de-scoping Charge
 - excellent opportunity to test software framework
 - many contributors Rosi, Kurt, Megan, Sarah, Jamie, DVP
- 2. Clustering Justin & Ohio U group, Brandon & MIT group
- 3. Updated studies of jet performance (systematic in collision system, eta, p_T , cone size, etc.) Megan
- 4. Discussion of Particle Flow algorithm in HI collisions Yen-Jie
- 5. Additional physics discussion / brainstorming Rosi, DVP, others

3. Jet response studies

 $(1/N_{\rm jet})({\rm d}N/{\rm d}(p_{\rm T}^{\rm reco}/p_{\rm T}^{\rm truth})$

- Examining effect of different calo stack configurations
 - "final" version of studies for ALD charge

 $(1/N_{\rm jet})({\rm d}N/{\rm d}(p_{\rm T}^{\rm reco}/p_{\rm T}^{\rm truth}))$

 $1/N_{\rm jet})({\rm d}N/{\rm d}(p_{\rm T}^{\rm reco}/p_{\rm T}^{\rm truth}))$

3. Hadron response studies

Total Calorimeter Response (Cluster)

Misses EMC: eta = (0.7,0.9)

- Single hadron response studies by Kurt Hill (Colorado) and Sarah Campbell (Columbia)
- Left: with thin OHCal, rate of punch through hadrons increases
- Right: with reduced-η EMCal, EM energy ends up in the I+OHCal

3. Biases on FF measurements

How max-z_{ch}dependent is the caloonly jet response?

What is the bias on an FF measurement if one only includes high-response jets?

3. EMCal clustering: Island alg

- Implementation/testing of CMS Island Algorithm by Brandon McKinzie (MIT summer student)
 - test of photon kinematics reconstruction
 - → and shower shapes for $e^{\pm}/y/\pi^0$
- Goal: benchmark, make usable by analyzers

3. EMCal clustering: PHENIX alg.

- Implementation/testing of PHENIX clustering algorithm by Justin & Ohio U group
 - \Rightarrow particular focus on splitting probability (γ vs. π^0 differentiation at low- p_T)
 - also testing reconstruction in central Hijing events
- Goal: modifications (if any) to make more appropriate for sPHENIX?

3. Particle Flow in CMS

- Comprehensive overview by Yen-Jie (MIT). A few observations:
 - extensive MC studies necessary to make algorithm perform well
 - → benefits over Calo-jets are observable dependent e.g. resolution for inclusive jet measurement may improve only modestly, but give a superior FF-dependence

3. Particle Flow in sPHENIX?

	CMS	ALEPH	ATLAS	sPHENIX
Magnetic field	3.8 T	1.5 T	2 T	1.5 T
Lever arm	1.29 m	1.8 m	1.4 m	-
Bending power	4.9 Tm	2.7 T.m	2.8 Tm	-
Pion reconstruction efficiency ($p_T = 5 \text{ GeV}$)	90-95%	99%	90-95%	95%
Tracker thickness at $\eta = 0 (\lambda_I)$	0.35	0.02	0.4	-
ECAL Molière radius	2.2 cm	1.6 cm	4.0 cm	- -
ECAL granularity	0.017×0.017	0.015×0.015	0.025×0.025	0.025x0.025
ECAL resolution	$\frac{3\%}{\sqrt{E}} \oplus \frac{12\%}{E} \oplus 0.3\%$	$rac{18\%}{\sqrt{E}} \oplus 0.9\%$	$rac{10\%}{\sqrt{E}} \oplus 0.17\%$	<u>15%</u> √E
ECAL longitudinal segmentation	no	yes	yes	√ E
HCAL granularity	0.085×0.085	0.06×0.06	0.1×0.1	0.1x0.1
HCAL resolution	$\frac{110\%}{\sqrt{E}} \oplus 9\%$	$\frac{85\%}{\sqrt{E}}$	$\frac{55\%}{\sqrt{E}} \oplus 6\%$	$\frac{120\%}{\sqrt{E}}$
	1 1			- v 2 -

- By the numbers, neither in "ATLAS" nor "CMS" camp
- Initial studies of PFlow benefits in sPHENIX have not found substantial improvements
 - challenge for TG: how to efficiently determine physics payoff of this approach?

4. Future activities

- Some key efforts where we hope to see progress in the future:
 - 1. Sensitivity of response to flavor & quenching
 - → interface with HF TG on truth-level flavor tagging & on tagged b-jet response
 - 2. Photon ID & isolation atop UE background
 - 3. Track-to-calo matching (initial work by CU, update?)
 - 4. Fake jet rejection & recoil jet / event mixing
 - 5. Unfolding challenge to recover quenched distributions
- Planning to have more "invited" talks, e.g. M. Verweij on substructure, A. Angerami on unfolding techniques, etc.
- JETSCAPE

- → also plan to interface closely with JETSCAPE
- Many opportunities for new JS members to have "ownership"
 - → every half-time student or post-doc potentially makes a big difference

 24

5. Plan for Quark Matter

- Proposed strategy: coordinated set of performance plots all looking at different aspects of a specific event sample
 - multiple suggestions to focus on photon+jet events (tests EMCal, HCal, tracking simultaneously)
 - → also, interesting physics potential
 - → according to our pQCD-based projections in the MIE proposal document: sPHENIX will sample 600 billion Au+Au events
 - \rightarrow expect ~10k events with $p_{T^{V}} > 30$ GeV in 0-20% collisions
- Deliverables for QM:
 - 1. performance for photon, jet, track measurements in pp and Au+Au
 - 2. statistical projections for distributions of interest
- In the next few slides: a peek at basic performance quantities
 - → analyzers are invited to study these in more detail conveners are committed to helping you get started!

5. Photon-jet event sample

- Generated sample of 10k Pythia8 photon+jet events with the following generator-level requirement:
 - → truth photon with p_{T} > 30 GeV in $|\eta_{S}|$ < 1
 - ⇒ at least one R=0.4 truth jet with $p_T^{\text{jet}} > 20 \text{ GeV}$ in $|\eta^{\text{jet}}| < 0.6$
- Full G4 simulation (tracking has same configuration as in September 2016 tracking review: ITS (cylindrical geometry) + IT + TPC)
 - → pp events at the moment, will incorporate embedding
 - → thanks to Chris P. for real-time debugging of HCal geometry issues
- Input HepMC files: /phenix/upgrades/decadal/dvp/GeneratorInputFiles/PhotonJet/
- Output G4 HITS files: /sphenix/sim/sim01/production/photonjet/2016_12_13/
 - → total event statistics match expected # of events in data

5. Photon & jet p_T performance

matching truth
photons to nearest
CEMC cluster (default
sPHENIX alg.)

matching truth jets to nearest *R*=0.4 tower jet

5. Detector effects on photon-jet balance

 $p_{\text{T}}^{\text{y,reco}}$ and $p_{\text{T}}^{\text{jet,reco}}$ corrected for overall response (1/0.946 and 1/0.787, respectively)

5. Jet mass performance

scatterplot of truth (particlebased) and reconstructed (calo-tower-based) jet mass

distribution of jet mass "response"

5. y-tagged FF statistical projection

truth-level fragmentation function in 10k events, $p_T^{hadron} > 1 \text{ GeV}$

relative statistical uncertainty

5. Tracking performance

Charged hadron reconstruction efficiency

Charged hadron p_T resolution

Thank you!

- 1. Role of the Jet Structure topical group
- 2. The evolving physics picture
- 3. Summary of activities in the TG
- 4. Future activities (where to get involved!)
- 5. Plan for Quark Matter

